3.378 \(\int \sqrt{a+b x^3} \, dx\)

Optimal. Leaf size=227 \[ \frac{2\ 3^{3/4} \sqrt{2+\sqrt{3}} a \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt{\frac{a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{\left (1-\sqrt{3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}{\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}\right ),-7-4 \sqrt{3}\right )}{5 \sqrt [3]{b} \sqrt{\frac{\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt{a+b x^3}}+\frac{2}{5} x \sqrt{a+b x^3} \]

[Out]

(2*x*Sqrt[a + b*x^3])/5 + (2*3^(3/4)*Sqrt[2 + Sqrt[3]]*a*(a^(1/3) + b^(1/3)*x)*Sqrt[(a^(2/3) - a^(1/3)*b^(1/3)
*x + b^(2/3)*x^2)/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)^2]*EllipticF[ArcSin[((1 - Sqrt[3])*a^(1/3) + b^(1/3)*x)/
((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)], -7 - 4*Sqrt[3]])/(5*b^(1/3)*Sqrt[(a^(1/3)*(a^(1/3) + b^(1/3)*x))/((1 + S
qrt[3])*a^(1/3) + b^(1/3)*x)^2]*Sqrt[a + b*x^3])

________________________________________________________________________________________

Rubi [A]  time = 0.0404463, antiderivative size = 227, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 11, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.182, Rules used = {195, 218} \[ \frac{2\ 3^{3/4} \sqrt{2+\sqrt{3}} a \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt{\frac{a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} F\left (\sin ^{-1}\left (\frac{\sqrt [3]{b} x+\left (1-\sqrt{3}\right ) \sqrt [3]{a}}{\sqrt [3]{b} x+\left (1+\sqrt{3}\right ) \sqrt [3]{a}}\right )|-7-4 \sqrt{3}\right )}{5 \sqrt [3]{b} \sqrt{\frac{\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt{a+b x^3}}+\frac{2}{5} x \sqrt{a+b x^3} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + b*x^3],x]

[Out]

(2*x*Sqrt[a + b*x^3])/5 + (2*3^(3/4)*Sqrt[2 + Sqrt[3]]*a*(a^(1/3) + b^(1/3)*x)*Sqrt[(a^(2/3) - a^(1/3)*b^(1/3)
*x + b^(2/3)*x^2)/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)^2]*EllipticF[ArcSin[((1 - Sqrt[3])*a^(1/3) + b^(1/3)*x)/
((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)], -7 - 4*Sqrt[3]])/(5*b^(1/3)*Sqrt[(a^(1/3)*(a^(1/3) + b^(1/3)*x))/((1 + S
qrt[3])*a^(1/3) + b^(1/3)*x)^2]*Sqrt[a + b*x^3])

Rule 195

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(x*(a + b*x^n)^p)/(n*p + 1), x] + Dist[(a*n*p)/(n*p + 1),
 Int[(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && GtQ[p, 0] && (IntegerQ[2*p] || (EqQ[n, 2
] && IntegerQ[4*p]) || (EqQ[n, 2] && IntegerQ[3*p]) || LtQ[Denominator[p + 1/n], Denominator[p]])

Rule 218

Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[(2*Sqr
t[2 + Sqrt[3]]*(s + r*x)*Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]*EllipticF[ArcSin[((1 - Sqrt[3
])*s + r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]])/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[(s*(s + r*x))/((1 + Sqr
t[3])*s + r*x)^2]), x]] /; FreeQ[{a, b}, x] && PosQ[a]

Rubi steps

\begin{align*} \int \sqrt{a+b x^3} \, dx &=\frac{2}{5} x \sqrt{a+b x^3}+\frac{1}{5} (3 a) \int \frac{1}{\sqrt{a+b x^3}} \, dx\\ &=\frac{2}{5} x \sqrt{a+b x^3}+\frac{2\ 3^{3/4} \sqrt{2+\sqrt{3}} a \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt{\frac{a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} F\left (\sin ^{-1}\left (\frac{\left (1-\sqrt{3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}{\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}\right )|-7-4 \sqrt{3}\right )}{5 \sqrt [3]{b} \sqrt{\frac{\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt{a+b x^3}}\\ \end{align*}

Mathematica [C]  time = 0.0049782, size = 46, normalized size = 0.2 \[ \frac{x \sqrt{a+b x^3} \, _2F_1\left (-\frac{1}{2},\frac{1}{3};\frac{4}{3};-\frac{b x^3}{a}\right )}{\sqrt{\frac{b x^3}{a}+1}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + b*x^3],x]

[Out]

(x*Sqrt[a + b*x^3]*Hypergeometric2F1[-1/2, 1/3, 4/3, -((b*x^3)/a)])/Sqrt[1 + (b*x^3)/a]

________________________________________________________________________________________

Maple [A]  time = 0.01, size = 297, normalized size = 1.3 \begin{align*}{\frac{2\,x}{5}\sqrt{b{x}^{3}+a}}-{\frac{{\frac{2\,i}{5}}a\sqrt{3}}{b}\sqrt [3]{-{b}^{2}a}\sqrt{{i\sqrt{3}b \left ( x+{\frac{1}{2\,b}\sqrt [3]{-{b}^{2}a}}-{\frac{{\frac{i}{2}}\sqrt{3}}{b}\sqrt [3]{-{b}^{2}a}} \right ){\frac{1}{\sqrt [3]{-{b}^{2}a}}}}}\sqrt{{ \left ( x-{\frac{1}{b}\sqrt [3]{-{b}^{2}a}} \right ) \left ( -{\frac{3}{2\,b}\sqrt [3]{-{b}^{2}a}}+{\frac{{\frac{i}{2}}\sqrt{3}}{b}\sqrt [3]{-{b}^{2}a}} \right ) ^{-1}}}\sqrt{{-i\sqrt{3}b \left ( x+{\frac{1}{2\,b}\sqrt [3]{-{b}^{2}a}}+{\frac{{\frac{i}{2}}\sqrt{3}}{b}\sqrt [3]{-{b}^{2}a}} \right ){\frac{1}{\sqrt [3]{-{b}^{2}a}}}}}{\it EllipticF} \left ({\frac{\sqrt{3}}{3}\sqrt{{i\sqrt{3}b \left ( x+{\frac{1}{2\,b}\sqrt [3]{-{b}^{2}a}}-{\frac{{\frac{i}{2}}\sqrt{3}}{b}\sqrt [3]{-{b}^{2}a}} \right ){\frac{1}{\sqrt [3]{-{b}^{2}a}}}}}},\sqrt{{\frac{i\sqrt{3}}{b}\sqrt [3]{-{b}^{2}a} \left ( -{\frac{3}{2\,b}\sqrt [3]{-{b}^{2}a}}+{\frac{{\frac{i}{2}}\sqrt{3}}{b}\sqrt [3]{-{b}^{2}a}} \right ) ^{-1}}} \right ){\frac{1}{\sqrt{b{x}^{3}+a}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x^3+a)^(1/2),x)

[Out]

2/5*x*(b*x^3+a)^(1/2)-2/5*I*a*3^(1/2)/b*(-b^2*a)^(1/3)*(I*(x+1/2/b*(-b^2*a)^(1/3)-1/2*I*3^(1/2)/b*(-b^2*a)^(1/
3))*3^(1/2)*b/(-b^2*a)^(1/3))^(1/2)*((x-1/b*(-b^2*a)^(1/3))/(-3/2/b*(-b^2*a)^(1/3)+1/2*I*3^(1/2)/b*(-b^2*a)^(1
/3)))^(1/2)*(-I*(x+1/2/b*(-b^2*a)^(1/3)+1/2*I*3^(1/2)/b*(-b^2*a)^(1/3))*3^(1/2)*b/(-b^2*a)^(1/3))^(1/2)/(b*x^3
+a)^(1/2)*EllipticF(1/3*3^(1/2)*(I*(x+1/2/b*(-b^2*a)^(1/3)-1/2*I*3^(1/2)/b*(-b^2*a)^(1/3))*3^(1/2)*b/(-b^2*a)^
(1/3))^(1/2),(I*3^(1/2)/b*(-b^2*a)^(1/3)/(-3/2/b*(-b^2*a)^(1/3)+1/2*I*3^(1/2)/b*(-b^2*a)^(1/3)))^(1/2))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{b x^{3} + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^3+a)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(b*x^3 + a), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\sqrt{b x^{3} + a}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^3+a)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*x^3 + a), x)

________________________________________________________________________________________

Sympy [A]  time = 0.892612, size = 37, normalized size = 0.16 \begin{align*} \frac{\sqrt{a} x \Gamma \left (\frac{1}{3}\right ){{}_{2}F_{1}\left (\begin{matrix} - \frac{1}{2}, \frac{1}{3} \\ \frac{4}{3} \end{matrix}\middle |{\frac{b x^{3} e^{i \pi }}{a}} \right )}}{3 \Gamma \left (\frac{4}{3}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x**3+a)**(1/2),x)

[Out]

sqrt(a)*x*gamma(1/3)*hyper((-1/2, 1/3), (4/3,), b*x**3*exp_polar(I*pi)/a)/(3*gamma(4/3))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{b x^{3} + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^3+a)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(b*x^3 + a), x)